Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
PeerJ ; 12: e17184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560451

RESUMO

Background: Single-cell annotation plays a crucial role in the analysis of single-cell genomics data. Despite the existence of numerous single-cell annotation algorithms, a comprehensive tool for integrating and comparing these algorithms is also lacking. Methods: This study meticulously investigated a plethora of widely adopted single-cell annotation algorithms. Ten single-cell annotation algorithms were selected based on the classification of either reference dataset-dependent or marker gene-dependent approaches. These algorithms included SingleR, Seurat, sciBet, scmap, CHETAH, scSorter, sc.type, cellID, scCATCH, and SCINA. Building upon these algorithms, we developed an R package named scAnnoX for the integration and comparative analysis of single-cell annotation algorithms. Results: The development of the scAnnoX software package provides a cohesive framework for annotating cells in scRNA-seq data, enabling researchers to more efficiently perform comparative analyses among the cell type annotations contained in scRNA-seq datasets. The integrated environment of scAnnoX streamlines the testing, evaluation, and comparison processes among various algorithms. Among the ten annotation tools evaluated, SingleR, Seurat, sciBet, and scSorter emerged as top-performing algorithms in terms of prediction accuracy, with SingleR and sciBet demonstrating particularly superior performance, offering guidance for users. Interested parties can access the scAnnoX package at https://github.com/XQ-hub/scAnnoX.


Assuntos
Análise de Célula Única , Software , Algoritmos , Genômica , Existencialismo
2.
Front Immunol ; 15: 1364506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571938

RESUMO

Introduction: Tertiary lymphoid structures (TLSs) are ectopic lymphoid formations that arise in non-lymphoid tissues due to chronic inflammation. The pivotal function of TLSs in regulating tumor invasion and metastasis has been established across several cancers, such as lung cancer, liver cancer, and melanoma, with a positive correlation between increased TLS presence and improved prognosis. Nevertheless, the current research about the clinical significance of TLSs in breast cancer remains limited. Methods: In our investigation, we discovered TLS-critical genes that may impact the prognosis of breast cancer patients, and categorized breast cancer into three distinct subtypes based on critical gene expression profiles, each exhibiting substantial differences in prognosis (p = 0.0046, log-rank test), with Cluster 1 having the best prognosis, followed by Cluster 2, and Cluster 3 having the worst prognosis. We explored the impact of the heterogeneity of these subtypes on patient prognosis, the differences in the molecular mechanism, and their responses to drug therapy and immunotherapy. In addition, we designed a machine learning-based classification model, unveiling highly consistent prognostic distinctions in several externally independent cohorts. Results: A notable marker gene CXCL13 was identified in Cluster 3, potentially pivotal in enhancing patient prognosis. At the single-cell resolution, we delved into the adverse prognosis of Cluster 3, observing an enhanced interaction between fibroblasts, myeloid cells, and basal cells, influencing patient prognosis. Furthermore, we identified several significantly upregulated genes (CD46, JAG1, IL6, and IL6R) that may positively correlate with cancer cells' survival and invasive capabilities in this subtype. Discussion: Our study is a robust foundation for precision medicine and personalized therapy, presenting a novel perspective for the contemporary classification of breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Hepáticas , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Estruturas Linfoides Terciárias/patologia , Prognóstico , Neoplasias Pulmonares/patologia
3.
Inorg Chem ; 63(15): 6988-6997, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569109

RESUMO

Rechargeable Zn-MnO2 batteries using mild water electrolytes have garnered significant interest owing to their impressive theoretical energy density and eco-friendly characteristics. However, MnO2 suffers from huge structural changes during the cycles, resulting in very poor stability at high charge-discharge depths. Briefly, the above problems are caused by slow kinetic processes and the dissolution of Mn atoms in the cycles. In this paper, a 2D homojunction electrode material (δ/ε-MnO2) based on δ-MnO2 and ε-MnO2 has been prepared by a two-step electrochemical deposition method. According to the DFT calculations, the charge transfer and bonding between interfaces result in the generation of electronic states near the Fermi surface, giving δ/ε-MnO2 a more continuous distribution of electron states and better conductivity, which is conducive to the rapid insertion/extraction of Zn2+ and H+. Moreover, the strongly coupled Mn-O-Mn interfacial bond can effectively impede dissolution of Mn atoms and thus maintain the structural integrity of δ/ε-MnO2 during the cycles. Accordingly, the δ/ε-MnO2 cathode exhibits high capacity (383 mAh g-1 at 0.1 A g-1), superior rate performance (150 mAh g-1 at 5 A g-1), and excellent cycling stability over 2000 cycles (91.3% at 3 A g-1). Profoundly, this unique homojunction provides a novel paradigm for reasonable selection of different components.

4.
Cell Death Dis ; 15(4): 291, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658569

RESUMO

Annexin A2 (ANXA2) is a widely reported oncogene. However, the mechanism of ANXA2 in esophageal cancer is not fully understood. In this study, we provided evidence that ANXA2 promotes the progression of esophageal squamous cell carcinoma (ESCC) through the downstream target threonine tyrosine kinase (TTK). These results are consistent with the up-regulation of ANXA2 and TTK in ESCC. In vitro experiments by knockdown and overexpression of ANXA2 revealed that ANXA2 promotes the progression of ESCC by enhancing cancer cell proliferation, migration, and invasion. Subsequently, animal models also confirmed the role of ANXA2 in promoting the proliferation and metastasis of ESCC. Mechanistically, the ANXA2/TTK complex activates the Akt/mTOR signaling pathway and accelerates epithelial-mesenchymal transition (EMT), thereby promoting the invasion and metastasis of ESCC. Furthermore, we identified that TTK overexpression can reverse the inhibition of ESCC invasion after ANXA2 knockdown. Overall, these data indicate that the combination of ANXA2 and TTK regulates the activation of the Akt/mTOR pathway and accelerates the progression of ESCC. Therefore, the ANXA2/TTK/Akt/mTOR axis is a potential therapeutic target for ESCC.


Assuntos
Anexina A2 , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Anexina A2/metabolismo , Anexina A2/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Camundongos Nus , Camundongos , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Movimento Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Masculino , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica , Feminino
5.
Mol Cell Biochem ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512536

RESUMO

In recent years, nonalcoholic fatty liver disease (NAFLD) has become a more serious public health issue worldwide. This study strived to investigate the molecular mechanism of pathogenesis of NAFLD and explore promising diagnostic and therapeutic targets for NAFLD. Raw data from GSE130970 were downloaded from the Gene Expression Omnibus database. We used the dataset to analyze the expression levels of cuproptosis-related genes in NAFLD patients and healthy controls to identify the differentially expressed cuproptosis-related genes (DECRGs). The relationship and potential mechanism between DECRGs and clinicopathological factors were examined by enrichment analysis and two consensus clustering methods. We screened key DECRGs based on Random Forest (RF), and then verified the key DECRGs in NAFLD patients, high-fat diet (HFD)-fed mice, and palmitic acid-induced AML12 cells. ROC analysis showed good diagnostic function of DECRGs in normal and NAFLD liver tissue. Two consensus clusters indicated the important role of cuproptosis in the development of NAFLD. We screened for key DECRGs (DLD, DLAT) based on RF and found a close relationship between the DECRGs and clinicopathological factors. We collected clinical blood samples to verify the differences in gene expression levels by qPCR. In addition, we further verified the expression levels of DLD and DLAT in HFD mice and AML12 cells, which showed the same results. This study provides a novel perspective on the pathogenesis of NAFLD. We identified two cuproptosis-related genes that are closely related to NAFLD. These genes may play a significant role in the molecular pathogenesis of NAFLD, which may be useful to make progress in the diagnosis and treatment of NAFLD.

6.
Inflammopharmacology ; 32(2): 1633-1646, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451396

RESUMO

Improving inflammation may serve as useful therapeutic interventions for the hindlimb unloading-induced disuse muscle atrophy. Celecoxib is a selective non-steroidal anti-inflammatory drug. We aimed to determine the role and mechanism of celecoxib in hindlimb unloading-induced disuse muscle atrophy. Celecoxib significantly attenuated the decrease in soleus muscle mass, hindlimb muscle function and the shift from slow- to fast-twitch muscle fibers caused by hindlimb unloading in rats. Importantly, celecoxib inhibited the increased expression of inflammatory factors, macrophage infiltration in damaged soleus muscle. Mechanistically, Celecoxib could significantly reduce oxidative stress and endoplasmic reticulum stress in soleus muscle of unloaded rats. Furthermore, celecoxib inhibited muscle proteolysis by reducing the levels of MAFbx, MuRF1, and autophagy related proteins maybe by inhibiting the activation of pro-inflammatory STAT3 pathway in vivo and in vitro. This study is the first to demonstrate that celecoxib can attenuate disuse muscle atrophy caused by hindlimb unloading via suppressing inflammation, oxidative stress and endoplasmic reticulum stress probably, improving target muscle function and reversing the shift of muscle fiber types by inhibiting STAT3 pathways-mediated inflammatory cascade. This study not only enriches the potential molecular regulatory mechanisms, but also provides new potential therapeutic targets for disuse muscle atrophy.


Assuntos
Elevação dos Membros Posteriores , Atrofia Muscular , Animais , Ratos , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Elevação dos Membros Posteriores/efeitos adversos , Elevação dos Membros Posteriores/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Estresse Oxidativo
7.
iScience ; 27(4): 109356, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510149

RESUMO

Familial Mediterranean fever (FMF) is a periodic fever syndrome caused by variation in MEFV. FMF is known for IL-1ß dysregulation, but the innate immune landscape of this disease has not been comprehensively described. Therefore, we studied circulating inflammatory proteins, and the function of monocytes and (albeit less extensively) neutrophils in treated FMF patients in remission. We found that monocyte IL-1ß and IL-6 production was enhanced upon stimulation, in concordance with alterations in the plasma inflammatory proteome. We did not observe changes in neutrophil functional assays. Subtle differences in chromatin accessibility and transcriptomics in our small patient cohort further argued for monocyte dysregulation. Together, these observations suggest that the MEFV-mutation-mediated primary immune dysregulation in monocytes leads to chronic inflammation that is subsequently associated with counterregulatory epigenetic/transcriptional changes reminiscent of tolerance. These data increase our understanding of the innate immune changes in FMF, aiding future management of chronic inflammation in these patients.

8.
J Gastrointest Oncol ; 15(1): 63-85, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38482233

RESUMO

Background: The discovery of biomarkers has facilitated the treatment of cancer. At present, the relationship between activin A receptor type-1 (ACVR1) and gastric cancer is gradually discovered. The aim of this study was to explore the expression of ACVR1 in gastric cancer and its clinical significance, to study the relationship between ACVR1 and tumor microenvironment (TME) for the prognosis of gastric cancer, and to further identify new targets for immunotherapy in gastric cancer. Methods: ACVR1 was first selected as a study gene according to several cancer and gastric cancer public datasets. Its pancancer expression was explored using the UCSC Xena database. The expression level, prognosis, and clinicopathological features of ACVR1 in gastric cancer were analyzed using The Cancer Genome Atlas (TCGA) database. Immunohistochemistry (IHC)-based experiments were conducted to study the expression of ACVR1 at the protein level. The IHC data were analyzed for correlations between ACVR1 expression and various clinicopathological factors and prognosis. The correlation of this gene with the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, immune infiltration, immune checkpoints, drug therapy, tumor mutation burden (TMB), microsatellite instability (MSI), and mismatch repair (MMR) system was analyzed using R software. Results: TCGA data showed that the expression of ACVR1 was higher in gastric cancer tissues than in paracancerous tissues. Moreover, the IHC experiments indicated that ACVR1 was upregulated in gastric cancer tissues at the protein level. Both univariate Cox and multivariate Cox results showed that the increase of ACVR1 was closely associated with tumor stage, size, lymph node metastasis, and age. High ACVR1 expression was linked to a poor prognosis of gastric cancer. The results also revealed that ACVR1 was closely related to suppressive immune cells and pathways. Analyses of immune checkpoints, antitumor drug, TMB, and immune microenvironment indicated that ACVR1 had an antitumor immune effect, promoting gastric cancer development and leading to poor immunotherapy. Conclusions: High ACVR1 expression can be used as an independent prognostic factor to predict the prognostic survival of patients with gastric cancer. ACVR1 expression in gastric cancer tissues was significantly correlated with immune infiltration and may thus serve as a potential therapeutic target for gastric cancer immunotherapy.

9.
J Mater Chem B ; 12(12): 3092-3102, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445378

RESUMO

Conductive hydrogel sensors have attracted attention for use in human motion monitoring detection, but integrating excellent biocompatibility, mechanical, self-adhesive, and self-healing properties, and high sensitivity into a hydrogel remains a challenge. In this work, a novel multifunctional conductive particle was designed and added to a polyacrylamide (PAM) matrix to prepare the hydrogel. It is worth noting that with the addition of polydopamine@poly(3,4-ethylenedioxythiophene) (PDA@PEDOT), the PAM/PDA@PEDOT hydrogel (PAPP hydrogel) showed excellent mechanical properties and high adhesion strength on different substrate surfaces. Meanwhile, the PAPP hydrogel shows outstanding self-healing properties, the mechanical properties of PAPP hydrogel broken from the middle recovered 92% tensile strength and 95% elongation at break after 12 h, respectively. Furthermore, assembled as strain wireless sensors, the PAPP sensor displays high sensitivity, where the gauge factor (GF) is 2.82, which can be used to accurately detect human facial micro-expressions and movements. Overall, the PAPP hydrogel with excellent mechanical, self-adhesive, and self-healing properties, and high sensitivity, demonstrated promise for use in wearable devices and bionic skins.


Assuntos
Biônica , Cimentos de Resina , Humanos , Nanogéis , Condutividade Elétrica , Hidrogéis
10.
Physiol Behav ; 277: 114499, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38378074

RESUMO

An increasing body of evidence suggests that the state of hyperalgesia could be socially transferred from one individual to another through a brief empathetic social contact. However, how the social transfer of pain develops during social contact is not well-known. Utilizing a well-established mouse model, the present study aims to study the functional role of visual and olfactory cues in the development of socially-transferred mechanical hypersensitivity. Behavioral tests demonstrated that one hour of brief social contact with a conspecific mouse injected with complete Freund's adjuvant (CFA) was both sufficient and necessary for developing socially-transferred mechanical hypersensitivity. One hour of social contact with visual deprivation could not prevent the development of socially-transferred mechanical hypersensitivity, and screen observation of a CFA cagemate was not sufficient to develop socially-transferred mechanical hypersensitivity in bystanders. Methimazole-induced olfactory deprivation, a compound with reversible toxicity on the nasal olfactory epithelium, was sufficient to prevent the development of socially-transferred mechanical hypersensitivity. Intriguingly, repeated but not acute olfactory exposure to the CFA mouse bedding induced a robust decrease in 50 % paw withdrawal thresholds (50 %PWTs) to mechanical stimuli, an effect returned to the baseline level after two days of washout with clean bedding. The findings strongly indicate that the normal olfactory function is crucial for the induction of mechanical hypersensitivity through brief empathetic contact, offering valuable insights for animal housing in future pain research.


Assuntos
Hiperalgesia , Dor , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Hiperalgesia/induzido quimicamente , Modelos Animais de Doenças , Inflamação
11.
Bioanalysis ; 16(5): 289-303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38334080

RESUMO

Background: Blood-invasive fungal infections can cause the death of patients, while diagnosis of fungal infections is challenging. Methods: A high-speed microscopy detection system was constructed that included a microfluidic system, a microscope connected to a high-speed camera and a deep learning analysis section. Results: For training data, the sensitivity and specificity of the convolutional neural network model were 93.5% (92.7-94.2%) and 99.5% (99.1-99.5%), respectively. For validating data, the sensitivity and specificity were 81.3% (80.0-82.5%) and 99.4% (99.2-99.6%), respectively. Cryptococcal cells were found in 22.07% of blood samples. Conclusion: This high-speed microscopy system can analyze fungal pathogens in blood samples rapidly with high sensitivity and specificity and can help dramatically accelerate the diagnosis of fungal infectious diseases.


Blood-invasive fungal infections can be lethal and their diagnosis is challenging. The existing detection methods have shortcomings such as having unsatisfactory sensitivity, being time-consuming and having detection limitations. In this study, a high-speed microscopy system was constructed based on deep learning. With this system, fungal cells in the blood can be detected and quantified directly with much higher sensitivity than traditional microscopes. Also, the effect of antifungal treatment can be monitored.


Assuntos
Aprendizado Profundo , Saccharomyces cerevisiae , Humanos , Microscopia , Sensibilidade e Especificidade
12.
J Hazard Mater ; 467: 133633, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335617

RESUMO

Cadmium (Cd) and arsenic (As) co-contamination is widespread and threatens human health, therefore it is important to investigate the bioavailability of Cd and As co-exposure. Currently, the interactions of Cd and As by in vitro assays are unknown. In this work, we studied the concurrent Cd-As release behaviors and interactions with in vitro simulated gastric bio-fluid assays. The studies demonstrated that As bioaccessibility (2.04 to 0.18 ± 0.03%) decreased with Cd addition compared to the As(V) single system, while Cd bioaccessibility (11.02 to 39.08 ± 1.91%) increased with As addition compared to the Cd single system. Release of Cd and As is coupled to proton-promoted and reductive dissolution of ferrihydrite. The As(V) is released and reduced to As(Ⅲ) by pepsin. Pepsin formed soluble complexes with Cd and As. X-ray photoelectron spectroscopy showed that Cd and As formed Fe-As-Cd ternary complexes on ferrihydrite surfaces. The coordination intensity of As-O-Cd is lower than that of As-O-Fe, resulting in more Cd release from Fe-As-Cd ternary complexes. Our study deepens the understanding of health risks from Cd and As interactions during environmental co-exposure of multiple metal(loid)s.


Assuntos
Arsênio , Cádmio , Compostos Férricos , Humanos , Pepsina A , Digestão
13.
Artigo em Inglês | MEDLINE | ID: mdl-38408517

RESUMO

Euryhaline organisms can accumulate organic osmolytes to maintain osmotic balance between their internal and external environments. Proline is a pivotal organic small molecule and plays an important role in osmoregulation that enables marine shellfish to tolerate high-salinity conditions. During high-salinity challenge, NAD kinase (NADK) is involved in de novo synthesis of NADP(H) in living organisms, which serves as a reducing agent for the biosynthetic reactions. However, the role of shellfish NADK in proline biosynthesis remains elusive. In this study, we show the modulation of NADK on proline synthesis in the razor clam (Sinonovacula constricta) in response to osmotic stress. Under acute hypersaline conditions, gill tissues exhibited a significant increase in the expression of ScNADK. To elucidate the role of ScNADK in proline biosynthesis, we performed dsRNA interference in the expression of ScNADK in gill tissues to assess proline content and the expression levels of key enzyme genes involved in proline biosynthesis. The results indicate that the knock-down of ScNADK led to a significant decrease in proline content (P<0.01), as well as the expression levels of two proline synthetase genes P5CS and P5CR involved in the glutamate pathway. Razor clams preferred to use ornithine as substrate for proline synthesis when the glutamate pathway is blocked. Exogenous administration of proline greatly improved cell viability and mitigated cell apoptosis in gills. In conclusion, our results demonstrate the important role of ScNADK in augmenting proline production under high-salinity stress, by which the razor clam is able to accommodate salinity variations in the ecological niche.


Assuntos
Bivalves , Fosfotransferases (Aceptor do Grupo Álcool) , Tolerância ao Sal , Animais , Bivalves/metabolismo , Prolina/metabolismo , Glutamatos/metabolismo
14.
Nat Commun ; 15(1): 1839, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424039

RESUMO

Untethered capsules hold clinical potential for the diagnosis and treatment of gastrointestinal diseases. Although considerable progress has been achieved recently in this field, the constraints imposed by the narrow spatial structure of the capsule and complex gastrointestinal tract environment cause many open-ended problems, such as poor active motion and limited medical functions. In this work, we describe the development of small-scale magnetically driven capsules with a distinct magnetic soft valve made of dual-layer ferromagnetic soft composite films. A core technological advancement achieved is the flexible opening and closing of the magnetic soft valve by using the competitive interactions between magnetic gradient force and magnetic torque, laying the foundation for the functional integration of both drug release and sampling. Meanwhile, we propose a magnetic actuation strategy based on multi-frequency response control and demonstrate that it can achieve effective decoupled regulation of the capsule's global motion and local responses. Finally, through a comprehensive approach encompassing ideal models, animal ex vivo models, and in vivo assessment, we demonstrate the versatility of the developed magnetic capsules and their multiple potential applications in the biomedical field, such as targeted drug delivery and sampling, selective dual-drug release, and light/thermal-assisted therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Gastroenteropatias , Animais , Fenômenos Físicos
15.
Sci Rep ; 14(1): 3565, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347000

RESUMO

Gout is a common autoinflammatory joint diseases characterized by deposition of monosodium urate (MSU) crystals which trigger an innate immune response mediated by inflammatory cytokines. IGF1R is one of the loci associated with both urate levels and gout susceptibility in GWAS to date, and IGF-1-IGF-1R signaling is implicated in urate control. We investigate the role of IGF-1/IGF1R signaling in the context of gouty inflammation. Also, we test the gout and urate-associated IGF1R rs6598541 polymorphism for association with the inflammatory capacity of mononuclear cells. For this, freshly isolated human peripheral blood mononuclear cells (PBMCs) were exposed to recombinant IGF-1 or anti-IGF1R neutralizing antibody in the presence or absence of solubilized urate, stimulated with LPS/MSU crystals. Also, the association of rs6598541 with IGF1R and protein expression and with ex vivo cytokine production levels after stimulation with gout specific stimuli was tested. Urate exposure was not associated with IGF1R expression in vitro or in vivo. Modulation of IGF1R did not alter urate-induced inflammation. Developing urate-induced trained immunity in vitro was not influenced in cells challenged with IGF-1 recombinant protein. Moreover, the IGF1R rs6598541 SNP was not associated with cytokine production. Our results indicate that urate-induced inflammatory priming is not regulated by IGF-1/IGF1R signaling in vitro. IGF1R rs6598541 status was not asociated with IGF1R expression or cytokine production in primary human PBMCs. This study suggests that the role of IGF1R in gout is tissue-specific and may be more relevant in the control of urate levels rather than in inflammatory signaling in gout.


Assuntos
Gota , Hiperuricemia , Humanos , Ácido Úrico/metabolismo , Hiperuricemia/complicações , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Leucócitos Mononucleares/metabolismo , Estudo de Associação Genômica Ampla , Gota/genética , Gota/complicações , Inflamação/metabolismo , Citocinas/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
16.
Eur J Pharmacol ; 967: 176383, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311281

RESUMO

Toll-like receptor (TLR) 7, a transmembrane signal transduction receptor expressed on the surface of endosomes, has become an attractive target for antiviral and cancer immunotherapies. TLR7 can induce signal transduction by recognizing single-stranded RNA or its analogs, leading to the release of cytokines such as IL-6, IL-12, TNF-α and type-I IFN. Activation of TLR7 helps to enhance immunogenicity and immune memory by stimulating immune cells. Herein, we identified a novel selective TLR7 agonist, GY101, and determined its ability to activate TLR7. In summary, in vitro, compound GY101 significantly induced the secretion of IL-6, IL-12, TNF-α and IFN-γ in mouse splenic lymphocytes; in vivo, peritumoral injection of GY101 significantly suppressed colon cancer CT26, as well as poorly immunogenic B16-F10 and 4T1 cancer cell-derived tumor growth by activating the infiltration of lymphocytes and polarization of M2-like macrophages into M1-like macrophages. These results demonstrate that GY101, as a potent TLR7 agonist, holds great potential for cancer immunotherapy.


Assuntos
Neoplasias do Colo , Receptor 7 Toll-Like , Animais , Camundongos , Receptor 7 Toll-Like/agonistas , Fator de Necrose Tumoral alfa , Interleucina-6 , Interleucina-12 , Adjuvantes Imunológicos , Neoplasias do Colo/tratamento farmacológico
17.
Cytokine ; 175: 156502, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38237388

RESUMO

BACKGROUND: Hyperuricemia has been shown to be an inducer of pro-inflammatory mediators by human primary monocytes. To study the deleterious effects of hyperuricemia, a reliable and stable in vitro model using soluble urate is needed. One recent report showed different urate-dissolving methods resulted in either pro-inflammatory or anti-inflammatory properties. The aim of this study was to compare the effect of two methods of dissolving urate on both primary human peripheral blood mononuclear cells (PBMCs) and THP-1 cells. The two methods tested were 'pre-warming' and 'dissolving with NaOH'. METHODS: Primary human PBMCs and THP-1 cells were exposed to urate solutions, prepared using the two methodologies: pre-warming and dissolving with NaOH. Afterwards, cells were stimulated with various stimuli, followed by the measurement of the inflammatory mediators IL-1ß, IL-6, IL-1Ra, TNF, IL-8, and MCP-1. RESULTS: In PBMCs, we observed an overall pro-inflammatory effect of urate, both in the pre-warming and the NaOH dissolving method. A similar pro-inflammatory effect was seen in THP-1 cells for both dissolving methods after restimulation. However, THP-1 cells exhibited pro-inflammatory profile with exposure to urate alone without restimulation. We did not find MSU crystals in our cellular assays. CONCLUSIONS: Overall, the urate dissolving methods do not have critical impact on its inflammatory properties. Soluble urate prepared using either of the two methods showed mostly pro-inflammatory effects on human primary PBMCs and monocytic cell line THP-1. However, human primary PBMCs and the THP-1 differ in their response to soluble urate without restimulation.


Assuntos
Hiperuricemia , Ácido Úrico , Humanos , Ácido Úrico/farmacologia , Ácido Úrico/metabolismo , Hiperuricemia/metabolismo , Leucócitos Mononucleares/metabolismo , Hidróxido de Sódio/metabolismo , Hidróxido de Sódio/farmacologia , Monócitos , Mediadores da Inflamação/metabolismo
18.
Anal Chim Acta ; 1287: 341951, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182357

RESUMO

BACKGROUND: Magnetic levitation (MagLev) based on negative magnetophoresis represents a promising technology for density-based analysis and manipulation of nonmagnetic objects. This approach has garnered considerable interest across multiple fields, such as chemistry, materials science, and biochemistry, primarily due to its inherent simplicity, precision, and cost-effectiveness. However, it is essential to recognize that frequently used MagLev configurations, including standard MagLev and axial MagLev, are not without their limitations. These configurations often struggle to strike a balance between levitation performance, ease of operation, and visibility. Therefore, it is necessary to develop a new MagLev configuration to address the aforementioned issue. RESULTS: This work describes the development of an innovative MagLev, termed "asymmetric MagLev", achieved by combining a ring magnet and a cylinder magnet as up-down asymmetric magnetic field sources. The asymmetric design overcomes the physical obstacles along the centerline of the standard MagLev, offering unique open-structure advantages, including easy handling of samples, the ability to observe samples from the top or bottom, and no restrictions on the container height. Meanwhile, comparative analysis reveals a considerable enhancement in the working distance of the asymmetric MagLev without significantly sacrificing the measurement range compared to the axial MagLev. Notably, the asymmetric MagLev achieves a remarkable sensitivity of up to about 1.8 × 104 mm (g cm-3)-1, surpassing the axial MagLev by approximately 30 times. Furthermore, experimental results validate the successful application of the asymmetric MagLev in density measurement and quality detection of small-sized objects. SIGNIFICANCE: This pioneering configuration represents the first utilization of up-down asymmetric magnets in the field of MagLev. Through the integration of an axially magnetized ring magnet and a cylinder magnet, the asymmetric MagLev design overcomes the limitations associated with conventional MagLev configurations. This innovative design exhibits outstanding operational capabilities and levitation performance, making it suitable for a wide range of applications in density-based measurement and analysis.

19.
Adv Mater ; 36(9): e2310522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38064417

RESUMO

Immunotherapy using an immune-checkpoint blockade has significantly improved its therapeutic effects. CM-272, which is a novel epigenetic inhibitor of G9a, induces immunogenic cell death (ICD) for recovering the sensitivity to anti-PD-1 antibodies; however, the efficacy of CM-272 is greatly limited by promoting the transcription activity of HIF-1α to form a hypoxic environment. Here, a Fe3+ -based nanoscale metal-organic framework (MIL-53) is used to load CM-272 (ultra-high loading rate of 56.4%) for realizing an MIL-53@CM-272 nanoplatform. After entering bladder cancer cells, Fe3+ not only promotes the decomposition of H2 O2 into O2 for O2 -compensated sonodynamic therapy but reduces the high level of glutathione in the tumor microenvironment (TME) for enhancing reactive oxygen species, including ferroptosis and apoptosis. MIL-53 carriers can be degraded in response to the TME, accelerating the release of CM-272, which helps achieve the maximum effectiveness in an O2 -sufficient TME by attenuating drug resistance. Furthermore, MIL-53@CM-272 enhances dendritic cell maturation and synergistically combines it with an anti-programmed cell death protein 1 antibody during the study of immune-related pathways in the transcriptomes of bladder cancer cells using RNA-seq. This study presents the first instance of amalgamating nanomedicine with CM-272, inducing apoptosis, ferroptosis, and ICD to achieve the "one arrow three eagle" effect.


Assuntos
Águias , Neoplasias da Bexiga Urinária , Animais , Neoplasias da Bexiga Urinária/tratamento farmacológico , Bexiga Urinária , Imunoterapia , Apoptose , Microambiente Tumoral
20.
Proc Natl Acad Sci U S A ; 121(1): e2307395120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38157451

RESUMO

Oxidative stress, which can be activated by a variety of environmental risk factors, has been implicated as an important pathogenic factor for inflammatory bowel disease (IBD). However, how oxidative stress drives IBD onset remains elusive. Here, we found that oxidative stress was strongly activated in inflamed tissues from both ulcerative colitis patients and Crohn's disease patients, and it caused nuclear-to-cytosolic TDP-43 transport and a reduction in the TDP-43 protein level. To investigate the function of TDP-43 in IBD, we inducibly deleted exons 2 to 3 of Tardbp (encoding Tdp-43) in mouse intestinal epithelium, which disrupted its nuclear localization and RNA-processing function. The deletion gave rise to spontaneous intestinal inflammation by inducing epithelial cell necroptosis. Suppression of the necroptotic pathway with deletion of Mlkl or the RIP1 inhibitor Nec-1 rescued colitis phenotypes. Mechanistically, disruption of nuclear TDP-43 caused excessive R-loop accumulation, which triggered DNA damage and genome instability and thereby induced PARP1 hyperactivation, leading to subsequent NAD+ depletion and ATP loss, consequently activating mitochondrion-dependent necroptosis in intestinal epithelial cells. Importantly, restoration of cellular NAD+ levels with NAD+ or NMN supplementation, as well as suppression of ALKBH7, an α-ketoglutarate dioxygenase in mitochondria, rescued TDP-43 deficiency-induced cell death and intestinal inflammation. Furthermore, TDP-43 protein levels were significantly inversely correlated with γ-H2A.X and p-MLKL levels in clinical IBD samples, suggesting the clinical relevance of TDP-43 deficiency-induced mitochondrion-dependent necroptosis. Taken together, these findings identify a unique pathogenic mechanism that links oxidative stress to intestinal inflammation and provide a potent and valid strategy for IBD intervention.


Assuntos
Doenças Inflamatórias Intestinais , Necroptose , Humanos , Animais , Camundongos , NAD/metabolismo , Estruturas R-Loop , Doenças Inflamatórias Intestinais/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Inflamação/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...